ЛИЗАТ AMEБOЦИТОВ LIMULUS

ENDOSAFE ® ENDOCHROME™

ФЛАКОН ДЛЯ ОПРЕДЕЛЕНИЯ БАКТЕРИАЛЬНЫХ ЭНДОТОКСИНОВ (ПИРОГЕНОВ)

НАЗНАЧЕНИЕ

Предназначен для количественного определения содержания эндотоксинов в водных растворах с помощью хромогенного метода по конечной точке

ПРЕДУПРЕЖДЕНИЕ

Настоящий реактив предназначен для обнаружения содержания бактериальных эндотоксинов в лекарственных препаратах, ветеринарных препаратах, биологических препаратах и изделиях медицинского назначения. Реактив не предназначен для клинической диагностики.

ОБЩАЯ ИНФОРМАЦИЯ

ЛАЛ-тест является наиболее чувствительным и высокоспецифичным способом оценки содержания бактериальных эндотоксинов - фрагментов клеточной стенки грамотрицательных бактерий, которые являются наиболее известными пирогенами. Основой метода является легко распознаваемое помутнение и гелирование ЛАЛ-реактива, происходящее под действием эндотоксинов (1-4,6). Простота и экономичность ЛАЛ-теста позволяют использовать его в качестве средства внутрипроизводственного контроля, контроля качества сырья и готовых лекарственных средств, изделий медицинского назначения (7). В статье «Бактериальные эндотоксины» Фармакопеи США описаны способы валидации ЛАЛ-теста, позволяющие использовать его вместо анализа на кроликах (10).

Хромогенный анализ по конечной точке является простым, воспроизводимым, количественным тестом, в котором после смешивания ЛАЛ-реактива ENDOCHROME с испытуемым образцом проводится измерение развивающегося в реакционной смеси желтого окрашивания. С помощью спектрофотометра или ридера для микропланшет можно измерить интенсивность окрашивания, которая прямо пропорциональна содержанию эндотоксина в образце. Концентрацию эндотоксина в неизвестном образце можно определить по калибровочной кривой. В количественных анализах значение λ соответствует наименьшей из концентраций, по которым построена калибровочная кривая.

БИОЛОГИЧЕСКИЕ ПРИНЦИПЫ

Эндотоксины грамотрицательных бактерий приводят к активации профермента (каскада ферментов, являющихся сериновыми протеазами), содержащегося в лизате амебоцитов Limulus (ЛАЛ). Активный свертывающий фермент разрезает коагулоген, что приводит к помутнению реакционной смеси (6). В присутствии хромогенного субстрата (S-2423) свертывающий фермент отрезает от субстрата хромофор, р-нитроанилин (pNA). Высвобожденный pNA придает раствору желтое окрашивание, которое можно измерить спектрофотометрически при длине волны 405-410 нм.

Определение содержания эндотоксинов с помощью хромогенного анализа по конечной точке основано на том, что интенсивность окрашивания реакционной смеси прямо пропорциональна содержанию эндотоксина.

РЕАКТИВЫ, ВХОДЯЩИЕ В НАБОР

ЛАЛ-реактив: лиофилизированный ЛАЛ-реактив Endosafe®ENDOCHROME содержит лизат амебоцитов Limulus, одно- и двухвалентные катионы и буфер. Чувствительность метода (λ) соответствует наименьшей из концентраций стандарта эндотоксина (RSE или КСЭ), по которым построена калибровочная кривая.

Разведение ЛАЛ-реактива: собирают содержимое флакона на дне, аккуратно постукивая флаконом по твердой поверхности. ЛАЛ-реактив разводят непосредственно перед использованием. Аккуратно, стараясь не привнести загрязнений, приподнимают пробку для того, чтобы погасить вакуум. Для разведения ЛАЛ-реактива с помощью пипетки добавляют во флакон с ЛАЛ-реактивом 1,4 мл воды для ЛАЛ-теста или буфера для разведения Endosafe®. Пробку отбрасывают. В том случае, если флакон с реактивом не будет немедленно использован, его закрывают пленкой Парафилм®, внутренняя поверхность которой может считаться апирогенной. Аккуратно перемешивают содержимое флакона до полного растворения реактива. Раствор реактива бесцветный. Не следует использовать флаконы в случае нарушения укупорки или в том случае, если после разведения в растворе наблюдается заметная опалесценция.

Хранение ЛАЛ-реактива: Лиофилизированный ЛАЛ-реактив относительно стабилен, его следует хранить при температуре $2-25\,^{\circ}$ C, следует избегать воздействия температур выше $25\,^{\circ}$ C. После разведения водой для ЛАЛ-теста реактив может храниться 4 часа при температуре $2-8\,^{\circ}$ C или две недели при температуре ниже $-20\,^{\circ}$ C, если он был заморожен немедленно после разведения. ЛАЛ-реактив можно замораживать и размораживать только один раз.

Субстрат S-2423: 10 мг лиофилизированного хромогенного субстрата с маннитом в качестве наполнителя. Субстрат разводят 7,2 мл воды для ЛАЛ-теста, разведенный субстрат стабилен в течение одного месяца при хранении при температуре 2-8°C

Буфер: апирогенный раствор Трис буфера 0,05 M, pH 9,0 предназначен для смешивания с субстратом.

Контрольный стандарт эндотоксина *E.coli* (**КСЭ**): лиофилизированный КСЭ для постановки положительных контролей. Активность стандарта, правила его разведения и хранения указаны в Сертификате Анализа.

Вода для ЛАЛ-теста: вода, не содержащая эндотоксинов, используется для разведения реактивов и подготовки испытуемых образцов.

Раствор субстрат-буфер: смешивают одну часть раствора субстрата и одну часть буферного раствора. Получившийся раствор стабилен в течение 8 часов при температуре 20-25°C.

ОБЩИЕ ПРЕДОСТОРОЖНОСТИ

ЛАЛ-реактив $Endosafe^{\otimes}$ ENDOCHROME предназначен только для диагностики in vitro. При работе с ЛАЛ-реактивом необходимо соблюдать осторожность, поскольку его токсичность не исследовалась.

Для правильного выполнения процедуры анализа следует строго придерживаться всех пунктов инструкции. Для проверки возможности ингибирования в анализ следует включать положительные контроли. Все материалы, контактирующие с испытуемыми образцами, должны быть апирогенны. Стеклянная посуда должна быть депирогенизирована в соответствии с валидированной процедурой, например, не менее трех часов при температуре 200°С. Материалы, которые невозможно подвергнуть тепловой депирогенизации или которые не имеют маркировки «не содержат эндотоксинов», должны быть проверены перед использованием в анализе.

ОТБОР И ПОДГОТОВКА ОБРАЗЦОВ

Все материалы и растворители, контактирующие с испытуемым образцом, не должны содержать эндотоксинов. Следует придерживаться правил асептической работы. Реакция ЛАЛ-реактива с эндотоксином зависит от значения рН, и это значение для реакционной смеси должно быть от 6,5 до 8,0. Если необходимо, рН доводят с помощью не содержащего эндотоксинов Трис буфера (поставляется Endosafe). Не следует доводить рН растворов, имеющих низкую буферную емкость.

ФАКТОРЫ. МЕШАЮЩИЕ РЕАКЦИИ

Анализ может быть валидирован для любого образца, если будет показано, что он не содержит факторов, мешающих реакции. Ингибирование обычно зависит от концентрации, и его легко преодолеть, делая разведения испытуемого образца на воде для ЛАЛ-теста. Обычно причиной ингибирования бывают: 1) факторы, мешающие протеканию ферментативной реакции гелеобразования, и 2) факторы, изменяющие свойства контрольного стандарта эндотоксина (положительный контроль) (9).

Максимально Допустимое Разведение: в фармакопейной статье «Бактериальные эндотоксины» установлена пороговая пирогенная доза, равная 5 ЕЭ/кг для внутривенных препаратов и 0,2 ЕЭ/кг для интратекальных препаратов (10). В Фармакопее США указаны специфические значения предельного содержания для конкретных лекарственных препаратов (10). Эти значения должны использоваться для расчета степени разведения испытуемого препарата,

которое может быть сделано для преодоления ингибирования, и при этом не будет означать превышения значения предельного содержания эндотоксинов (8). Максимально Допустимое Разведение (МДР) может быть рассчитано по формуле, представленной в фармакопейной статье «Бактериальные эндотоксины» (10).

Для лекарственных препаратов с установленным значением предельного содержания бактериальных эндотоксинов МДР рассчитывается по формуле:

Следует помнить, что для хромогенного анализа по конечной точке значение λ соответствует наименьшей из измеряемых концентраций эндотоксина по калибровочной калибровочной кривой.

Например, значение предельного содержания бактериальных эндотоксинов для циклофосфамида, установленное в Фармакопее, составляет 0,17 ЕЭ/мг, а концентрация активного вещества в растворе равна 20 мг/мл. Если в анализе используется калибровочная кривая с наименьшей точкой, равной 0,1 ЕЭ/мл, МДР будет равно 1:34. В этом случае циклофосфамид может быть разведен в 1:34 раза для преодоления возможного ингибирования.

Проверка на наличие мешающих факторов (ингибирование/усиление реакции) проводится путем добавления эндотоксина к образцу или разведения образца раствором эндотоксина с известной концентрацией (до получения концентрации эндотоксина в образце 4λ). Определение этой концентрации в опыте проводится в двух повторностях в соответствии с инструкцией производителя реактива. Можно считать, что испытуемый образец не ингибирует и не усиливает реакцию в том случае, если определенная в опыте по калибровочной кривой концентрация эндотоксина в положительном контроле находится в пределах 50-200% от добавленной концентрации. Следует продолжать разведение образца водой для ЛАЛ-теста, не превышая значения МДР, до тех пор, пока определяемая концентрация эндотоксина не будет соответствовать требованиям.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ПРОВЕДЕНИЯ АНАЛИЗА

Микропланшеты

Стеклянные апирогенные пробирки для разведений

Репетир со стерильными шприцами (Penerup Eppendorf $^{\text{®}}$ со шприцами на 2,5 мл Combitips $^{\text{®}}$ или аналогичное оборудование)

Стеклянные пипетки (рекомендуется) и калиброванные механические дозаторы со стерильными апирогенными наконечниками

Вихревая мешалка

Внимание: апирогенные материалы должны быть валидированы или сертифицированы, содержание эндотоксинов в них должно быть ниже минимальной концентрации, определяемой в анализе.

ПРОЦЕДУРА АНАЛИЗА

Отсчет времени начала анализа начинают после добавления ЛАЛ-реактива в первую лунку микропланшета. Для сокращения времени добавления ЛАЛ-реактива используют репетир.

ПОСЛЕДОВАТЕЛЬНОСТЬ ДОБАВЛЕНИЯ РАСТВОРОВ В МИКРОПЛАНШЕТ	
Испытуемый образец или стандарт эндотоксина (20-25°C)	50 мкл
Инкубируют при 37°C в течение примерно 5 мин	
Раствор ЛАЛ-реактива	50 мкл
Инкубируют при 37°C в течение примерно 7 мин	
Раствор Субстрат-Буфер (37°C)	100 мкл
Перемешивают и инкубируют при 37°C в течение 5 мин	

Немедленно перемешивают

* В Сертификате Анализа КСЭ приведены точные данные по времени для анализов с высоким и низким диапазонами измерений.

Результаты измеряют на спектрофотометре при длине волны 405-410 нм.

ХРОМОГЕННЫЙ АНАЛИЗ ПО КОНЕЧНОЙ ТОЧКЕ ДЛЯ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЭНДОТОКСИНОВ В ВОДЕ

СТАНДАРТИЗАЦИЯ ИЛИ КАЛИБРОВОЧНЫЕ КРИВЫЕ

1. Диапазон измерения 0,15-1,2 ЕЭ/мл (высокий диапазон)

В каждый анализ должен быть включен стандартный ряд концентраций эндотоксина, по которым строят калибровочную кривую. Каждая концентрация должна быть поставлена в двух повторностях.

Время инкубирования реакционной смеси ЛАЛ-реактив/испытуемый образец или положительный контроль может составлять от 4 до 9 мин, время инкубирования определяют в процессе валидации метода. Точные указания по необходимому времени инкубирования приведены в Сертификате Анализа КСЭ.

2. **Диапазон измерения** 0,015-0,12 **ЕЭ/мл** (низкий диапазон)

Определение низких концентраций эндотоксина требует большего времени инкубирования по сравнению с высоким диапазоном измерения. Время инкубирования реакционной смеси ЛАЛ-реактив/испытуемый образец или положительный контроль может составлять от 6 до 20 мин, время инкубирования определяют в процессе валидации метода. В Сертификате Анализа КСЭ указаны рекомендованные производителем значения временных интервалов для каждой серии ЛАЛ-реактива Endosafe ENDOCHROME.

РАСЧЕТ СОДЕРЖАНИЯ ЭНДОТОКСИНА

Концентрацию эндотоксина в неизвестном образце можно рассчитать с помощью калькулятора или графическими методами. Лучше всего использовать калькулятор или компьютер с возможностью построения линейной регрессии. Сначала вводят данные калибровочной кривой. Затем значения поглощения, полученные для испытуемого образца, используют для определения концентрации эндотоксина по линейной регрессии.

В графическом методе строится график отношения среднего значения поглощения и соответствующей ему концентрации эндотоксина в ЕЭ/мл. Построенную кривую используют для расчета концентрации эндотоксина.

ОБРАЗЦЫ, ОТЛИЧНЫЕ ОТ ВОДЫ

Для образцов, отличных от воды, необходимо исследовать возможность проявления ингибирования или усиления реакции. Для этого проводят определение известной концентрации эндотоксина (обычно в четыре раза большей минимальной концентрации по калибровочной кривой) параллельно в испытуемом образце и в воде для ЛАЛ-теста. В большинстве случаев ингибирование может быть преодолено разведением испытуемого образца.

После снижения ингибирующего/усиливающего действия образца до приемлемых значений (полученное значение концентрации эндотоксина в положительном контроле в пределах 50-200% от добавленной концентрации) можно проводить его анализ по схеме, описанной для воды.

РАБОЧИЕ ХАРАКТЕРИСТИКИ

Линейность: должна быть проверена линейность калибровочной кривой в пределах диапазона концентраций, используемых для определения содержания эндотоксина. Следует проверить не менее 4 разных концентраций, представляющих выбранный диапазон, и отрицательный контроль на воде для ЛАЛ-теста в двух повторностях. Абсолютное значение коэффициента корреляции г должно быть больше или равно значению 0,980.

Воспроизводимость: следует убедиться в воспроизводимости и низком коэффициенте отклонения для повторностей. Коэффициент отклонения равен одной сотой стандартного отклонения группы значений, разделенного на среднее значение. Коэффициент отклонения выражается в процентах и должен быть менее 10%.

БИБЛИОГРАФИЯ

- 1. Bang, F. B. "A Bacterial Disease of Limulus Polyphemus." Bull. Johns. Hopkins. Hosp., 98, p. 325 (1956).
- 2. Cooper, J.F. and Harbert J.C. "Endotoxin as a Cause of Aseptic Meningitis after Radionuclide Cisternography." J. Nucl. Med., 16, p. 809 (1976).
- 3. Cooper, J.F., Levin.J. and Wagner, H.N. "Quantitative Comparision of In Vitro and In Vivo Methods for the Detection of Endotoxin." J. Lab. Clin. Med., 78. p. 138 (1971).
- 4. Hochstein, H.D. "The LAL Test versus the Rabbit Pyrogen Test for Endotoxin Detection: Update '87." Pharm. Technol., 11(6), p. 124 (1987).
- 5. Ivanga S. "Chromogenic substrate for horseshoe crab clotting enzime: its application for the assay of bacterial endotoxins". Haemostasis 7. p. 183, (1987).
- 6. Levin, J. and Bang, F.B. "Clottable protein in Limulus: Its Localization and Kinetics of Its Coagulation by Endotoxin." Thromb. Diath. Haemorh., 19, p. 186 (1968).
- 7. McCullough, K.Z. "Process Control: In-process and Raw Material Testing Using LAL." Pharm. Technol., 12(5) p. 40 (1988).
- 8. Weary, M.E. "Understanding and setting endotoxin limits" J.Parent. Sci. & Tech., 44:1., p. 16 (1990).
- 9. Cooper, J.F. "Resolving LAL Test Interferences." J.Parent. Sci. & Tech., 44:1, p.13 (1990).
- 10. Bacterial endotoxin test <85>. In <u>The U.S. Pharmacopeia</u>, 37rd rev., United Book Press, Inc., Baltimore, MD.
- В набор входит: 5 флаконов ЛАЛ-реактива на 140 определений, вода для ЛАЛ-теста, субстрат, контрольный стандарт эндотоксина и буфер.

производитель:

Charles River Endosafe, Division of Charles River Laboratories, Inc 1023, Wappo Road, 43-B, Charleston, SC 29407, USA

Phone: (843) 766-7575; FAX: (843) 766-7676 www.criver.com

ПОСТАВЩИК: ООО «НПО «ЛАЛ-Центр»

117105, г. Москва, ул. Нагатинская, д.3A Тел.: +7 (495)517-40-37 e-mail: lalnews@limulustest.ru www.limulustest.ru